Stem Cell Epigenetics and Biomolecular Imaging

Principal Investigator:
Professor Udo Oppermann
Grant support:
Group Members:
Clarence Yapp (DPhil student)
Anneke Kramm (DPhil student)
Sharif Halai (DPhil student)
Professor Andrew Carr
Stefan Knapp
Colin Goding
Len Seymour
Stephen Frye (University of North Carolina)
Jay Bradner (Harvard/MIT)
Professor Alison Noble
Dr Mark Thompson
Dr Julian Moger (University of Exeter, UK)
Confocal microscope

THE BRC/NDORMS 4D Confocal Laser Scanning, Multiphoton/SHG Imaging and Femtosecond Laser based Optoporation System

Research vision and objectives

Growing cells

Merged Image of eGPF expressing mESC (green) growing on
feeder cells imaged with SteREO Lumar. V12 system

The landmark discovery that lineage-restricted cells can be reprogrammed directly to a state of pluripotency through ectopic expression of defined transcription factors (e.g. Oct4, SOX2, KLF4, and c-Myc) has opened a new frontier in the field of regenerative medicine. In this project, we wish to assess the potential of induced pluripotent stem (iPS) cells in regenerative medicine of musculoskeletal diseases. Stem cell therapy based on iPS cells obtained from patients and retransplanted after differentiation into functional tissue, avoids immunological rejection and offers great potential as possible therapeutic option in musculoskeletal diseases. However, before advancement of patient-derived iPS cells and differentiation into desired tissue can proceed into clinical, regenerative applications, several important aspects have to be addressed, and strategies overcoming these hurdles have to be developed. These include (i) improvement of reprogramming efficiency by utilizing our in-house expertise and availability of small molecule and siRNA libraries (focused kinase, signalling pathways and epigenetic ie methylation and acetylation inhibitors), (ii) strict avoidance of viral methods or animal material to prevent adverse genomic modifications and immunological complications, (iii) methods to assess iPS and differentiation states of iPS derived differentiated target cells, (iv) methods to monitor and manipulate possible teratogenic potentials of iPS derived cells using CHIP-seq and large-scale sequencing to detect chromatin/epigenetic modifications, and (v) methods to monitor and promote integration of differentiated cells into functional tissue.

Our vision is to successfully implement the novel strategies into a platform where we will generate iPS cells from patient-derived somatic cells, and generate from these differentiated tenocytes and chondrocytes on synthetic scaffolds ready for autologous transplantion into the patient. To begin with, we will develop alternative, non-viral transfection methods based on femtosecond laser technology (optoporation), will investigate optimal vectors for obtaining iPS cells and will systematically manipulate key pathways (senescence, inflammation, epigenetics ie DNA/protein methylations, acetylation) to obtain high numbers of stable and well-characterized iPS cells. We will develop novel non-invasive monitoring and assessment strategies for iPS and somatic cells based on near-infrared multiphoton and Raman spectroscopy; and will devise strategies (dynamic mechanical analysis, Fourier transform infrared spectroscopy) to assess iPS derived cells and matrix ex vivo in scaffold materials which would be used for transplantation.

Recent Key Publications

View all publications (the list below shows the past five years). Arranged by year. Sorted by date of publication. Sort by title? Where possible, links point to PubMed. Click icon to switch to Europe PubMed Central UK PubMed Central icon


  1. Tirlapur UK, Yapp C. Near Infrared Three-Dimensional Nonlinear Optical Monitoring of Stem Cell Differentiation. Chapter 13.In A. Diaspro (ed.) Optical Fluorescence Microscopy. Springer-Verlag Berlin Heidelberg (2011)


  1. Xu X, Urban JP, Tirlapur UK, Cui Z. Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads. Osteoarthritis Cartilage. 2010 Mar;18(3):433-9. Epub 2009 Oct 12