Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The profound effects of the bisphosphonates on calcium metabolism were discovered over 30 years ago, and they are now well established as the major drugs used for the treatment of bone diseases associated with excessive resorption. Their principal uses are for Paget disease of bone, myeloma, bone metastases, and osteoporosis in adults, but there has been increasing and successful application in pediatric bone diseases, notably osteogenesis imperfecta. Bisphosphonates are structural analogues of inorganic pyrophosphate but are resistant to enzymatic and chemical breakdown. Bisphosphonates inhibit bone resorption by selective adsorption to mineral surfaces and subsequent internalization by bone-resorbing osteoclasts where they interfere with various biochemical processes. The simpler, non-nitrogen-containing bisphosphonates (eg, clodronate and etidronate) can be metabolically incorporated into nonhydrolysable analogues of adenosine triphosphate (ATP) that may inhibit ATP-dependent intracellular enzymes. In contrast, the more potent, nitrogen-containing bisphosphonates (eg, pamidronate, alendronate, risedronate, ibandronate, and zoledronate) inhibit a key enzyme, farnesyl pyrophosphate synthase, in the mevalonate pathway, thereby preventing the biosynthesis of isoprenoid compounds that are essential for the posttranslational modification of small guanosine triphosphate (GTP)-binding proteins (which are also GTPases) such as Rab, Rho, and Rac. The inhibition of protein prenylation and the disruption of the function of these key regulatory proteins explains the loss of osteoclast activity. The recently elucidated crystal structure of farnesyl diphosphate reveals how bisphosphonates bind to and inhibit at the active site via their critical nitrogen atoms. Although bisphosphonates are now established as an important class of drugs for the treatment of many bone diseases, there is new knowledge about how they work and the subtle but potentially important differences that exist between individual bisphosphonates. Understanding these may help to explain differences in potency, onset and duration of action, and clinical effectiveness.

Original publication

DOI

10.1542/peds.2006-2023H

Type

Journal article

Journal

Pediatrics

Publication Date

03/2007

Volume

119 Suppl 2

Pages

S150 - S162

Keywords

Adult, Animals, Bone Density Conservation Agents, Bone Diseases, Calcification, Physiologic, Child, Diphosphonates, Drug Administration Routes, Drug Administration Schedule, Drug Evaluation, Humans, Osteoclasts, Treatment Outcome