Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The intention was to associate blood pressure (BP) variability (BPV) measurements to Local field potentials (LFPs). Thus, assessing how LFPs can co-vary with BPV to permit implantable brain devices (via LFPs) to control output. Elevated BPV is a considerable cardiovascular disease risk factor. Often patients are resistant to pharmacotherapies. An alternative Deep Brain Stimulation (DBS) poses greater risk. Mathematical techniques based on nonlinear dynamics assessed their correlation of BPV chaotic global metrics to LFPs. Chaos Forward Parameter (CFP6) was computed for LFPs, at three electrode depths in the mid-brain and sensory thalamus. Mean, root mean square of the successive differences (RMSSD) and the chaotic global metrics were computed for the BP signal. The right ventroposterolateral (RVPL) nucleus provided a substantial correlation via CFP6 for BP with R-squared up to approximately 79%. by means of LFP gamma oscillations. Investigation of BPV via LFPs as a proxy marker might allow therapies to be attuned in a closed-loop system. Whilst all patients were chronic pain patients the chaotic global relationship should be unperturbed. LFPs correlation does not unconditionally predict its causation. There is no certainty DBS in these locations would be therapeutic but can be used as an assessment tool.

Original publication

DOI

10.51537/chaos.1262839

Type

Journal article

Journal

Chaos theory and applications

Publisher

Akif Akgul

Publication Date

05/05/2023