Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Phantom pain after arm amputation is widely believed to arise from maladaptive cortical reorganization, triggered by loss of sensory input. We instead propose that chronic phantom pain experience drives plasticity by maintaining local cortical representations and disrupting inter-regional connectivity. Here we show that, while loss of sensory input is generally characterized by structural and functional degeneration in the deprived sensorimotor cortex, the experience of persistent pain is associated with preserved structure and functional organization in the former hand area. Furthermore, consistent with the isolated nature of phantom experience, phantom pain is associated with reduced inter-regional functional connectivity in the primary sensorimotor cortex. We therefore propose that contrary to the maladaptive model, cortical plasticity associated with phantom pain is driven by powerful and long-lasting subjective sensory experience, such as triggered by nociceptive or top-down inputs. Our results prompt a revisiting of the link between phantom pain and brain organization.

Original publication

DOI

10.1038/ncomms2571

Type

Journal article

Journal

Nat commun

Publication Date

2013

Volume

4

Keywords

Adolescent, Adult, Amputees, Brain Mapping, Case-Control Studies, Child, Child, Preschool, Chronic Pain, Hand, Humans, Middle Aged, Movement, Nerve Net, Phantom Limb, Sensation, Somatosensory Cortex, Young Adult