Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Press-fit acetabular components are susceptible to rim deformation. The inherent variability within acetabular reaming techniques may generate increased press-fit and, subsequently, additional component deformation. The purpose of this study was to analyze the insertion and deformation characteristics of acetabular components designed for dual-mobility systems based on component design, size, and reaming technique. Shell deformation was quantified in a validated worst-case scenario foam pinch model. Thin-walled, one-piece, and modular dual-mobility shells of varying size were implanted in under- and over-reamed cavities with insertion force measured and shell deformation assessed using digital image correlation. Increased shell size resulted in larger rim deformation in one-piece components, with a reduction in press-fit by 1 mm resulting in up to 48% reduction in insertion forces and between 23% and 51% reduction in shell deformation. Lower insertion forces and deformations were observed in modular components. Variability in acetabular reaming plays a significant role in the ease of implantation and component deformation in total hip arthroplasty. Modular components are less susceptible to deformation than thin-walled monoblock shells. Care should be taken to avoid excessive under-reaming, particularly in the scenario of large shell size and high-density patient bone stock.

Original publication

DOI

10.1177/0954411917701952

Type

Journal article

Journal

Proc inst mech eng h

Publication Date

08/2017

Volume

231

Pages

691 - 698

Keywords

Total hip arthroplasty, deformation, digital image correlation, modular, reaming, Acetabulum, Arthroplasty, Replacement, Hip, Mechanical Phenomena, Prosthesis Design