Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The effect of prostaglandins (PGs) on osteoclast differentiation, an important point of control for bone resorption, is poorly understood. After an initial differentiation phase that lasts at least 4 days, murine monocytes, cocultured with UMR106 osteoblastic cells (in the presence of 1,25-dihydroxyvitamin D3) give rise to tartrate-resistant acid phosphatase (TRAP) positive osteoclast-like cells that are capable of lacunar bone resorption. PGE2 strongly inhibits TRAP expression and bone resorption in these cocultures. To examine further the cellular mechanisms associated with this inhibitory effect, we added PGE2 to monocyte/UMR106 cocultures at specific times before, during, and after this initial 4-day differentiation period. To determine whether this PGE2 inhibition was dependent on the type of stromal cell supporting osteoclast differentiation, we also added PGE2 to cocultures of monocytes with ST2 preadipocytic cells. Inhibition of bone resorption was greatly reduced when the addition of PGE2 to monocyte/UMR106 cocultures was delayed until the fourth day of incubation; when delayed until the seventh day, inhibition did not occur. PGE2 inhibition of bone resorption was concentration-dependent and at 10(-6) M was also mediated by PGE1 and PGF2alpha. In contrast to its effects on monocyte/UMR106 cocultures, PGE2 stimulated bone resorption in monocyte/ST2 cocultures. Both ST2 cells and UMR106 cells were shown to express functional receptors for PGE2.These results show that PGs strongly influence the differentiation of osteoclast precursors and that this effect is dependent not only on the type and dose of PG administered, but also on the nature of the bone-derived stromal cell supporting this process.

Original publication

DOI

10.1007/s002239900187

Type

Journal article

Journal

Calcif tissue int

Publication Date

01/1997

Volume

60

Pages

63 - 70

Keywords

Acid Phosphatase, Animals, Cell Differentiation, Cell Line, Coculture Techniques, Isoenzymes, Monocytes, Osteoclasts, Prostaglandins, Rats, Tartrate-Resistant Acid Phosphatase