Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ultrasound-triggered drug-loaded microbubbles have great potential for drug delivery due to their ability to locally release drugs and simultaneously enhance their delivery into the target tissue. We have recently shown that upon applying ultrasound, nanoparticle-loaded microbubbles can deposit nanoparticles onto cells grown in 2D monolayers, through a process that we termed "sonoprinting". However, the rigid surfaces on which cell monolayers are typically growing might be a source of acoustic reflections and aspherical microbubble oscillations, which can influence microbubble-cell interactions. In the present study, we aim to reveal whether sonoprinting can also occur in more complex and physiologically relevant tissues, by using free-floating 3D tumor spheroids as a tissue model. We show that both monospheroids (consisting of tumor cells alone) and cospheroids (consisting of tumor cells and fibroblasts, which produce an extracellular matrix) can be sonoprinted. Using doxorubicin-liposome-loaded microbubbles, we show that sonoprinting allows to deposit large amounts of doxorubicin-containing liposomes to the outer cell layers of the spheroids, followed by doxorubicin release into the deeper layers of the spheroids, resulting in a significant reduction in cell viability. Sonoprinting may become an attractive approach to deposit drug patches at the surface of tissues, thereby promoting the delivery of drugs into target tissues.

Original publication

DOI

10.1016/j.jconrel.2019.10.051

Type

Journal article

Journal

J control release

Publication Date

28/12/2019

Volume

316

Pages

79 - 92

Keywords

Drug delivery, Loaded Microbubbles, Mechanisms, Microbubbles, Sonoprinting, Ultrasound