Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Polyethylene acetabular components are common in hip arthroplasty. Highly cross-linked polyethylene (HXLPE) has lower wear than ultra-high molecular weight polyethylene (UHMWPE). Evidence suggests that wear particles induce inflammation causing periprosthetic osteolysis contributing to implant loosening with wear rates of 0.05 mm/y were considered safe. We aimed to compare incidence and volume of periacetabular osteolysis between HXLPE and UHMWPE using computed tomography. METHODS: Initially, 54 hips in 53 patients were randomized to HXLPE or UHMWPE acetabular liner. At 10 years, 39 hips in 38 patients remained for the radiostereometric analysis' demonstrating significantly lower wear in the HXLPE group. At 12 years, 14 hips in 13 patients were lost to follow-up leaving 25 hips for computed tomography assessment. Images were reconstructed to detect osteolysis and where identified, areas were segmented and volumized. RESULTS: Osteolysis was observed in 8 patients, 7 from the UHMWPE group and only 1 from the HXLPE group (Fisher exact, P = .042). There was no correlation between the amount of polyethylene wear and osteolysis volume; however, the radiostereometric analysis-measured wear rate in patients with osteolysis from both groups was significantly higher than overall average wear rate. CONCLUSION: This data demonstrates lower incidence of periacetabular osteolysis in the HXLPE group of a small cohort. Although numbers are too low to estimate causation, in the context of lower wear in the HXLPE group, this finding supports the hypothesis that HXLPE may not elevate osteolysis risk, and hence does not suggest that HXLPE wear particles are more biologically active than those generated by earlier generations of polyethylene.

Original publication

DOI

10.1016/j.arth.2016.10.037

Type

Journal article

Journal

J arthroplasty

Publication Date

04/2017

Volume

32

Pages

1186 - 1191

Keywords

Computed Tomography, RSA, highly cross-linked polyethylene, periprosthetic osteolysis, polyethylene wear, primary total hip arthroplasty, Acetabulum, Aged, Aged, 80 and over, Arthroplasty, Replacement, Hip, Cartilage Diseases, Cross-Linking Reagents, Female, Follow-Up Studies, Hip Joint, Hip Prosthesis, Humans, Male, Middle Aged, Osteolysis, Polyethylene, Polyethylenes, Prosthesis Design, Prosthesis Failure, Radiostereometric Analysis, Tomography, X-Ray Computed