Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The importance of CLEC-2, a natural ligand/receptor for Gp38/Podoplanin, in the formation of the lymphatic vasculature has recently been demonstrated. As the development and maintenance of lymph nodes (LNs) is dependent on the formation of the lymphatic vasculature and the differentiation of Gp38/Podoplanin(+) stromal cells, we investigated the role of CLEC-2 in lymphoneogenesis and LN homeostasis. Using constitutive Clec1b(-/-) mice, we showed that while CLEC-2 was not necessary for initiation of the LN anlage, it was required at late stages of development. Constitutive deletion of CLEC-2 induced a profound defect in lymphatic endothelial cell proliferation, resulting in lack of LNs at birth. In contrast, conditional deletion of CLEC-2 in the megakaryocyte/platelet lineage in Clec1b(fl/fl)PF4-Cre mice led to the development of blood-filled LNs and fibrosis, in absence of a proliferative defect of the lymphatic endothelial compartment. This phenotype was also observed in chimeric mice reconstituted with Clec1b(fl/fl)PF4-Cre bone marrow, indicating that CLEC-2 expression in platelets was required for LN integrity. We demonstrated that LNs of Clec1b(fl/fl)PF4-Cre mice are able to sustain primary immune responses but show a defect in immune cell recirculation after repeated immunizations, thus suggesting CLEC-2 as target in chronic immune response.

Original publication

DOI

10.1182/blood-2013-03-489286

Type

Journal article

Journal

Blood

Publication Date

15/05/2014

Volume

123

Pages

3200 - 3207

Keywords

Animals, Blood Platelets, Cell Proliferation, Cells, Cultured, Endothelium, Lymphatic, Gene Deletion, Lectins, C-Type, Lymph Nodes, Lymphangiogenesis, Megakaryocytes, Mice, Mice, Inbred C57BL