Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multiple myeloma (MM) is a haematological malignancy characterised by the proliferation and accumulation of terminally differentiated abnormal plasma cells in the bone marrow. Patients suffer from bone pain, factures, anaemia, osteolytic lesions and renal failure. Despite recent advancement in therapy MM remains an incurable disease due to the emergences of drug resistance and frequent relapse. For many decades, research has been heavily focused on understanding the relationship between bone cells such as osteoblast, osteocytes and osteoclasts and the infiltrating tumour cells. However, it is now clear that the tumour-supportive bone microenvironment including cellular and non-cellular components play an important role in driving MM progression and bone disease. One of the most abundant cell types in the bone microenvironment is the bone marrow adipocyte (BMAd). Once thought of as inert space filling cells, they have now been recognised as having specialised functions, signalling in an autocrine, paracrine and endocrine manner to support normal systemic homeostasis. BMAds are both an energy store and a source of secreted adipokines and bioactive substances, MM cells are able to hijack this metabolic machinery to fuel migration, growth and survival. With global obesity on the rise, it has never been more important to further understand the contribution these cells have in both normal and disease settings. The aim of this review is to summarise the large body of emerging evidence supporting the interplay between BMAds and MM cells and to delineate how they fit into the vicious cycle of disease.

Original publication

DOI

10.1016/j.beem.2021.101541

Type

Journal article

Journal

Best pract res clin endocrinol metab

Publication Date

07/2021

Volume

35

Keywords

adipokines, adiponectin, bone marrow adipocytes, multiple myeloma, obesity, Adiposity, Bone Marrow, Humans, Multiple Myeloma, Neoplasm Recurrence, Local, Obesity, Tumor Microenvironment