Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Postmenopausal bone mass is determined by both peak bone mass and subsequent bone loss. Previous studies have shown that peak bone mass is under genetic influence mediated partly by factors affecting bone formation. The rate of bone loss increases markedly after the menopause, but is highly variable from subject to subject. The aims of this study were to determine whether postmenopausal bone turnover was under genetic control, which should be linked to the genetic influence on the rate of postmenopausal bone loss. A classical twin study was performed that compared the intraclass correlations in monozygotic (MZ) twins with those in dizygotic (DZ) twins, with any difference assumed to be due to genetic factors. Markers of bone formation and resorption were measured in 240 untreated postmenopausal twins, aged 45-69 yr, on the average 12.3 yr (SD, 6.0) postmenopause, including 61 MZ pairs and 59 DZ pairs. The intraclass correlation coefficient of MZ twin pairs, rMZ (95% confidence interval), for 2 specific markers of bone formation, serum osteocalcin and bone-specific alkaline phosphatase, were higher than the corresponding rDZ [0.67 (range, 0.59-0.75) vs. 0.48 (range, 0.35-0.61; P = 0.06) for osteocalcin and 0.53 (range, 0.41-0.65) vs. 0.21 (range, 0.01-0.41; P = 0.02) for bone-specific alkaline phosphatase]. For serum propeptide of type I collagen, a type I collagen synthesis marker that exhibits only a slight increase after menopause, a high proportion of its variance was explained by genetic factors [rMZ = 0.82 (0.77-0.87), rDZ = 0.33 (0.16-0.50); P < 0.001]. The correlations for bone resorption measured by three distinct urinary markers, total deoxypyridinoline and two cross-linked type I collagen peptides (CrossLaps and NTX), that increase markedly after menopause were higher in MZ than in DZ pairs, but the difference reached significance only for NTX (P = 0.03). For urinary free dexoypyridinoline, a marker reflecting bone collagen degradation that increases moderately after menopause, the proportion of the variance explained by genetic factors was highly significant (P = 0.002). In conclusion, our data indicate that a proportion of the variance in postmenopausal levels of both bone formation and resorption markers are explained by genetic factors, but this contribution was clearly significant only for markers that do not change markedly at the menopause. These data suggest that the contribution of genetic factors to overall postmenopausal bone turnover and possibly bone loss is likely to be small.

Original publication

DOI

10.1210/jcem.81.1.8550741

Type

Journal article

Journal

J clin endocrinol metab

Publication Date

01/1996

Volume

81

Pages

140 - 146

Keywords

Aged, Bone Development, Bone Resorption, Female, Humans, Middle Aged, Osteoporosis, Postmenopausal, Postmenopause, Twins