Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Increased navicular drop (NDro) and navicular drift (NDri) are associated with musculoskeletal pathology in adults. The aim of this study was to investigate navicular motion in children, with respect to foot posture, and identify altered patterns of motion that demonstrate midfoot dysfunction. Navicular motion in different activities was evaluated as well as the role of flexibility and body mass index (BMI). METHODS: Twenty-five children with flatfeet and 26 with neutral feet (age range, 8-15) underwent gait analysis using a 12-camera Vicon MX system (Vicon, UK). Navicular motion indices were calculated from marker coordinates. Student t tests and Pearson's correlation coefficient (R) were used to investigate navicular motion differences between groups. The relationship between NDRo, NDRi, and their dynamic counterparts was also assessed. RESULTS: Normalized NDri (NNDri) and normalized NDro (NNDro) correlated strongly in neutral feet (R = 0.56, P = .003) but not in flatfeet (R = 0.18, P > .05). Flatfeet demonstrated reduced NNDri compared to neutral footed children (0.7 vs 1.6, P = .007). No difference was observed in NNDro between groups. Standard and dynamic measures of NDri and NDRo were highly correlated. Navicular motion correlated poorly with BMI and flexibility. CONCLUSION: Motion of the navicular in the transverse and the sagittal plane is important when investigating foot function. Uncoupling of this motion in flatfeet may indicate impaired midfoot function. Reduced navicular medial translation in flatfeet may indicate altered alignment of the talonavicular joint. CLINICAL RELEVANCE: The measurement of dynamic navicular motion indices did not add information about dynamic foot function compared to measurement of static indices.

Original publication

DOI

10.1177/1071100714537629

Type

Journal article

Journal

Foot ankle int

Publication Date

09/2014

Volume

35

Pages

929 - 937

Keywords

flatfeet, navicular; motion analysis, pes planovalgus, Adolescent, Body Mass Index, Case-Control Studies, Child, Female, Flatfoot, Gait, Humans, Imaging, Three-Dimensional, Infrared Rays, Male, Movement, Range of Motion, Articular, Tarsal Bones