Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Current materials used for in vitro 3D cell culture are often limited by their poor similarity to human tissue, batch-to-batch variability and complexity of composition and manufacture. Here, we present a "blank slate" culture environment based on a self-assembling peptide gel free from matrix motifs. The gel can be customised by incorporating matrix components selected to match the target tissue, with independent control of mechanical properties. Therefore the matrix components are restricted to those specifically added, or those synthesised by encapsulated cells. The flexible 3D culture platform provides full control over biochemical and physical properties, allowing the impact of biochemical composition and tissue mechanics to be separately evaluated in vitro. Here, we demonstrate that the peptide gels support the growth of a range of cells including human induced pluripotent stem cells and human cancer cell lines. Furthermore, we present proof-of-concept that the peptide gels can be used to build disease-relevant models. Controlling the peptide gelator concentration allows peptide gel stiffness to be matched to normal breast (<1 kPa) or breast tumour tissue (>1 kPa), with higher stiffness favouring the viability of breast cancer cells over normal breast cells. In parallel, the peptide gels may be modified with matrix components relevant to human breast, such as collagen I and hyaluronan. The choice and concentration of these additions affect the size, shape and organisation of breast epithelial cell structures formed in co-culture with fibroblasts. This system therefore provides a means of unravelling the individual influences of matrix, mechanical properties and cell-cell interactions in cancer and other diseases.

Original publication

DOI

10.1016/j.matbio.2019.06.009

Type

Journal article

Journal

Matrix biol

Publication Date

01/2020

Volume

85-86

Pages

15 - 33

Keywords

Biomaterials, Cancer, Extracellular matrix, Stem cells, Stiffness