Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The objective is to develop and validate an artificial neural network (ANN) that learns and predicts length of stay (LOS), inpatient charges, and discharge disposition before primary total knee arthroplasty (TKA). The secondary objective applied the ANN to propose a risk-based, patient-specific payment model (PSPM) commensurate with case complexity. METHODS: Using data from 175,042 primary TKAs from the National Inpatient Sample and an institutional database, an ANN was developed to predict LOS, charges, and disposition using 15 preoperative variables. Outcome metrics included accuracy and area under the curve for a receiver operating characteristic curve. Model uncertainty was stratified by All Patient Refined comorbidity indices in establishing a risk-based PSPM. RESULTS: The dynamic model demonstrated "learning" in the first 30 training rounds with areas under the curve of 74.8%, 82.8%, and 76.1% for LOS, charges, and discharge disposition, respectively. The PSPM demonstrated that as patient comorbidity increased, risk increased by 2.0%, 21.8%, and 82.6% for moderate, major, and severe comorbidities, respectively. CONCLUSION: Our deep learning model demonstrated "learning" with acceptable validity, reliability, and responsiveness in predicting value metrics, offering the ability to preoperatively plan for TKA episodes of care. This model may be applied to a PSPM proposing tiered reimbursements reflecting case complexity.

Original publication




Journal article


J arthroplasty

Publication Date





2220 - 2227.e1


artificial intelligence, artificial neural network, deep learning, machine learning, total knee arthroplasty (TKA)