Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Highly porous ingrowth surfaces have been introduced into tibial tray fixation to improve long-term survivorship in cementless total knee arthroplasty. This study was designed to evaluate the effect of porous ingrowth surface on primary stability in the implanted cementless tibial component. Three tibial tray designs possessing sintered bead or roughened porous coating ingrowth surfaces were implanted into a foam tibia model with primary stability assessed via digital image correlation during stair descent and condylar liftoff loading. Follow-up testing was conducted by implanting matched-pair cadaveric tibias with otherwise identical trays with two iterations of ingrowth surface design. Trays were loaded and micromotion evaluated in a condylar liftoff model. The sintered bead tibial tray exhibited slightly lower micromotion than the roughened porous coating in stair descent loading. However, no significant difference in primary stability was observed in condylar liftoff loading in either foam or cadaveric specimens. Cementless tibial trays featuring two different iterations of porous ingrowth surfaces demonstrated both good stability in cadaveric specimens with less than 80 microns of micromotion and 1 mm of subsidence under cyclic loading. While improved ingrowth surfaces may lead to improved biological fixation and long-term osteointegration, this study was unable to identify a difference in primary stability associated with subsequent ingrown surface design iteration.

Original publication




Journal article


J knee surg

Publication Date