Genetic variants of calcium and vitamin D metabolism in kidney stone disease.

Howles SA., Wiberg A., Goldsworthy M., Bayliss AL., Gluck AK., Ng M., Grout E., Tanikawa C., Kamatani Y., Terao C., Takahashi A., Kubo M., Matsuda K., Thakker RV., Turney BW., Furniss D.

Kidney stone disease (nephrolithiasis) is a major clinical and economic health burden with a heritability of ~45-60%. We present genome-wide association studies in British and Japanese populations and a trans-ethnic meta-analysis that include 12,123 cases and 417,378 controls, and identify 20 nephrolithiasis-associated loci, seven of which are previously unreported. A CYP24A1 locus is predicted to affect vitamin D metabolism and five loci, DGKD, DGKH, WDR72, GPIC1, and BCR, are predicted to influence calcium-sensing receptor (CaSR) signaling. In a validation cohort of only nephrolithiasis patients, the CYP24A1-associated locus correlates with serum calcium concentration and a number of nephrolithiasis episodes while the DGKD-associated locus correlates with urinary calcium excretion. In vitro, DGKD knockdown impairs CaSR-signal transduction, an effect rectified with the calcimimetic cinacalcet. Our findings indicate that studies of genotype-guided precision-medicine approaches, including withholding vitamin D supplementation and targeting vitamin D activation or CaSR-signaling pathways in patients with recurrent kidney stones, are warranted.

DOI

10.1038/s41467-019-13145-x

Type

Journal article

Journal

Nat commun

Publication Date

15/11/2019

Volume

10

Keywords

Adult, Aged, Asian Continental Ancestry Group, Calcium, Diacylglycerol Kinase, European Continental Ancestry Group, Female, Genetic Variation, Genome-Wide Association Study, Genotype, Humans, Japan, Kidney Calculi, Male, Middle Aged, Polymorphism, Single Nucleotide, Prospective Studies, Proteins, Receptors, Calcium-Sensing, United Kingdom, Vitamin D

Permalink Original publication