Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We present the results of torque magnetometry and magnetic susceptibility measurements to study in detail the spin reorientation transition (SRT) and magnetic anisotropy in the permanent magnet NdCo5. We further show simulations of the measurements using first-principles calculations based on density-functional theory and the disordered local moment picture of magnetism at finite temperatures. The good agreement between theory and experimental data leads to a detailed description of the physics underpinning the SRT. In particular we are able to resolve the magnetization of, and to reveal a canting between, the Nd and Co sublattices. The torque measurements carried out in the ac and ab planes near the easy direction allow us to estimate the anisotropy constants, K 1, K 2 and K 4 and their temperature dependences. Torque curves, τ(γ) recorded by varying the direction of a constant magnetic field in the crystallographic ac plane show a reversal in the polarity as the temperature is changed across the SRT (240 < T < 285 K). Within this domain, τ(γ) exhibits unusual features different to those observed above and below the transition. The single crystals of NdCo5 were grown using the optical floating zone technique.

Original publication




Journal article


J phys condens matter

Publication Date