Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: This study has three objectives. (1) Investigate the association between body mass index (BMI) and the efficacy of primary hip replacement using a patient-reported outcome measure (PROMs) with a measurement floor and ceiling, (2) Explore the performance of different estimation methods to estimate change in PROMs score following surgery using a simulation study and real word data where data has measurement floors and ceilings and (3) Lastly, develop guidance for practising researchers on the analysis of PROMs in the presence of floor and ceiling effects. DESIGN: Simulation study and prospective national medical device register. SETTING: National Register of Joint Replacement and Medical Devices. METHODS: Using a Monte Carlo simulation study and data from a national joint replacement register (162 513 patients with pre- and post-surgery PROMs), we investigate simple approaches for the analysis of outcomes with floor and ceiling effects that are measured at two occasions: linear and Tobit regression (baseline adjusted analysis of covariance, change-score analysis, post-score analysis) in addition to linear and multilevel Tobit models. PRIMARY OUTCOME: The primary outcome of interest is change in PROMs from pre-surgery to 6 months post-surgery. RESULTS: Analysis of data with floor and ceiling effects with models that fail to account for these features induce substantial bias. Single-level Tobit models only correct for floor or ceiling effects when the exposure of interest is not associated with the baseline score. In observational data scenarios, only multilevel Tobit models are capable of providing unbiased inferences. CONCLUSIONS: Inferences from pre- post-studies that fail to account for floor and ceiling effects may induce spurious associations with substantial risk of bias. Multilevel Tobit models indicate the efficacy of total hip replacement is independent of BMI. Restricting access to total hip replacement based on a patients BMI can not be supported by the data.

Original publication




Journal article


Bmj open

Publication Date





arthroplasty, change scores, epidemiologic methods, longitudinal studies, multi-level tobit model, patient reported outcome measures