Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cytosolic pattern recognition receptors trigger pyroptosis by detection of danger- or pathogen-associated molecular patterns. These receptors initiate the assembly of inflammasomes, multimeric protein complexes that drive caspase-1 activation. Active caspase-1 cleaves the proinflammatory cytokines IL-1β and IL-18 and the pore-forming protein gasdermin-D (GSDMD) thereby liberating its N-terminal domain. The GSDMD N-termini form multimeric pores at the plasma membrane that allow leakage of intracellular content and ultimately trigger a type of cell death called "pyroptosis." Emerging studies have revealed that GSDMD is also processed by apoptotic caspases-8/-3/-7. In this chapter, we aim to describe methods to monitor lytic cell death and to distinguish between GSDMD processing events and the GSDMD fragments that are generated after pyroptosis or apoptosis induction. We also illustrate the difference between GSDMD pore formation, and final cell lysis, and how this affects to the release of intracellular content. Finally, we show that the activation of another pore-forming protein, gasdermin-E, does not exclusively translate into lytic cell death in bone marrow-derived macrophages.

Original publication

DOI

10.1007/978-1-0716-2449-4_14

Type

Journal article

Journal

Methods mol biol

Publication Date

2022

Volume

2523

Pages

209 - 237

Keywords

Apoptosis, Cell death, Gasdermin, IL-1β quantification, Immunoblotting, Inflammasomes, LDH detection, Pyroptosis, Apoptosis, Caspase 1, Inflammasomes, Intracellular Signaling Peptides and Proteins, Neoplasm Proteins, Phosphate-Binding Proteins, Pyroptosis