Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Current treatments for Dupuytren’s disease are limited to late-stage disease when patients have developed flexion contractures and have impaired hand function. They all have limitations, including the risk of recurrence and complications. The use of treatments for early-stage disease, such as intralesional steroid injections or radiotherapy which lack a clear biological basis or evidence of effectiveness based robust randomized, double blind, placebo-controlled trials, highlights the desire of patients to access treatments before they develop significant flexion contractures. A detailed understanding of the cellular landscape and molecular signalling in nodules of early-stage disease would permit the identification of potential therapeutic targets. This approach led to the identification of tumour necrosis factor (TNF) as a target. A phase 2a clinical trial identified 40 mg in 0.4 mL adalimumab as the most efficacious dose and a subsequent randomized, double blind, placebo-controlled phase 2b trial showed that four intranodular injections at 3-month intervals resulted in decrease in nodule hardness and size on ultrasound scan at 12 months, and both parameters continued to decrease further at 18 months, 9 months after the final injection. This type of approach provides clinicians with a robust evidence base for advising their patients.

Original publication




Journal article


Journal of hand surgery (european volume)


SAGE Publications

Publication Date



175319342211313 - 175319342211313