Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

CD34(+) cells, present within the bone marrow, have previously been shown to possess pancreatic endocrine potential. Based on this observation, we explored the capacity of CD34(+) cells derived in culture from the differentiation of human embryonic stem cells (hESC), for their in vivo pancreatic endocrine capacity.Sheep were transplanted with hESC-derived CD34(+) cells, as well as nonsorted differentiated cultures. Transplantations were carried out with in utero intraperitoneal injections prior to development of the immune system in the fetus so that tolerance toward foreign antigens was acquired during gestation and persisted in the adult.All cell populations that were tested demonstrated human cellular activity and long-term presence up to 5 years. However, the in vivo beta-cell-like activity achieved from the transplantation of the sorted CD34(+) cell population was not augmented by transplanting the entire cell population from which the CD34(+) cells were isolated. Human DNA and insulin messenger RNA were detected in sheep pancreases. An average of 1.51 ng/mL human C-peptide was detected in serum from eight animals transplanted with differentiated cell populations and assayed up to 55 months posttransplantation. Transplantation of as few as 23,500 cells resulted in long-term sustainable beta-cell-like activity. Teratomas were absent in the transplanted animals.Our data suggest that hESC-derived CD34(+) cells have a potential for long-term in vivo endocrine cellular activity that could prove useful in regenerative medicine. Because the same cell population has previously been shown to contain hematopoietic potential, it could be used for the induction of immunological tolerance and bone marrow chimerism prior to cellular therapy for diabetes.

Original publication

DOI

10.1016/j.exphem.2010.03.002

Type

Journal article

Journal

Experimental hematology

Publication Date

06/2010

Volume

38

Pages

516 - 525.e4

Addresses

Department of Animal Biotechnology, University of Nevada, Reno, Reno, NV 89557, USA. daisy@med.unr.edu

Keywords

Islets of Langerhans, Animals, Sheep, Humans, Insulin, Blood Glucose, DNA, RNA, Messenger, DNA Primers, Antigens, CD34, Enzyme-Linked Immunosorbent Assay, Immunohistochemistry, Reverse Transcriptase Polymerase Chain Reaction, Cell Differentiation, Base Sequence, Embryonic Stem Cells