Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Prognostic models play a crucial role in the clinical decision-making process. Unfortunately, missing covariate data impede the construction of valid and reliable models, potentially introducing bias, if handled inappropriately. The extent of missing covariate data within reported cancer prognostic studies, the current handling and the quality of reporting this missing covariate data are unknown. Therefore, a review was conducted of 100 articles reporting multivariate survival analyses to assess potential prognostic factors, published within seven cancer journals in 2002. Missing covariate data is a common occurrence in studies performing multivariate survival analyses, being apparent in 81 of the 100 articles reviewed. The percentage of eligible cases with complete data was obtainable in 39 articles, and was <90% in 17 of these articles. The methods used to handle incomplete covariates were obtainable in 32 of the 81 articles with known missing data and the most commonly reported approaches were complete case and available case analysis. This review has highlighted deficiencies in the reporting of missing covariate data. Guidelines for presenting prognostic studies with missing covariate data are proposed, which if followed should clarify and standardise the reporting in future articles.

Original publication

DOI

10.1038/sj.bjc.6601907

Type

Journal article

Journal

Br j cancer

Publication Date

05/07/2004

Volume

91

Pages

4 - 8

Keywords

Decision Making, Guidelines as Topic, Humans, Models, Theoretical, Multivariate Analysis, Neoplasms, Prognosis, Reproducibility of Results, Sample Size