Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two members of the human aldo-keto reductase (AKR) superfamily participate in the biosynthesis of bile acids by catalyzing the NADP(H) dependent reduction of 3-keto groups (AKR1C4) and Delta4 double bonds (AKR1D1) of oxysterol precursors. Structure determination of human AKR1C4 and homology modelling of AKR1D1 followed by docking experiments were used to explore active site geometries. Substrate docking resulted in ligand poses satisfying catalytic constraints, and indicates a critical role for Trp227/230 in positioning the substrate in a catalytically competent orientation. Based on the evidence gathered from our docking experiments and experimental structures, this tryptophan residue emerges as a major determinant governing substrate specificity of a subset of enzymes belonging to the AKR1 subfamily.

Original publication




Journal article


Mol cell endocrinol

Publication Date





199 - 204


Bile Acids and Salts, Catalytic Domain, Crystallography, X-Ray, Humans, Ligands, Models, Molecular, Oxidoreductases, Structural Homology, Protein, Structure-Activity Relationship, Tryptophan