Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We report the effects of pulsed electromagnetic fields (PEMFs) on the responsiveness of osteoclasts to cellular, hormonal, and ionic signals. Osteoclasts isolated from neonatal rat long bones were dispersed onto either slices of devitalised cortical bone (for the measurement of resorptive activity) or glass coverslips (for the determination of the cytosolic free Ca2+ concentration, [Ca2+]). Osteoclasts were also cocultured on bone with osteoblastlike, UMR-106 cells. Bone resorption was quantitated by scanning electron microscopy and computer-assisted morphometry. PEMF application to osteoblast-osteoclast cocultures for 18 hr resulted in a twofold stimulation of bone resorption. In contrast, resorption by isolated osteoclasts remained unchanged in the presence of PEMFs, suggesting that osteoblasts were necessary for the PEMF-induced resorption simulation seen in osteoblast-osteoclast cocultures. Furthermore, the potent inhibitory action of the hormone calcitonin on bone resorption was unaffected by PEMF application. However, PEMFs completely reversed another quite distinct action of calcitonin on the osteoclast: its potent inhibitory effect on the activation of the divalent cation-sensing (or Ca2+) receptor. For these experiments, we made fura 2-based measurements of cytosolic [Ca2+] in single osteoclasts in response to the application of a known Ca2+ receptor agonist, Ni2+. We first confirmed that activation of the osteoclast Ca2+ receptor by Ni2+ (5 mM) resulted in a characteristic monophasic elevation of cytosolic [Ca2+]. As shown previously, this response was attenuated strongly by calcitonin at concentrations between 0.03 and 3 nM but remained intact in response to PEMFs. PEMF application, however, prevented the inhibitory effect of calcitonin on Ni2+-induced cytosolic Ca2+ elevation. This suggested that the fields disrupted the interaction between the calcitonin and Ca2+ receptor systems. In conclusion, we have shown that electromagnetic fields stimulate bone resorption through an action on the osteoblast and, by abolishing the inhibitory effects of calcitonin, also restore the responsiveness of osteoclasts to divalent cations.

Original publication

DOI

10.1002/(sici)1097-4652(199809)176:3<537::aid-jcp10>3.0.co;2-x

Type

Journal article

Journal

Journal of cellular physiology

Publication Date

09/1998

Volume

176

Pages

537 - 544

Addresses

Center for Osteoporosis and Skeletal Aging, Philadelphia VA Medical Center, Pennsylvania 19104, USA.

Keywords

Femur, Tibia, Cells, Cultured, Osteoclasts, Animals, Animals, Newborn, Rats, Rats, Wistar, Bone Resorption, Calcium, Nickel, Calcitonin, Parathyroid Hormone, Tumor Necrosis Factor-alpha, Calcium-Binding Proteins, Electric Stimulation, Electrophysiology, Electromagnetic Fields