Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Osteoclasts are known to possess a divalent cation-sensitive receptor, the Ca2+ receptor (CaR). The latter monitors changes in the local Ca2+ concentration generated as a result of hydroxyapatite dissolution. CaR activation elevates cytosolic [Ca2+] and thereby inhibits osteoclastic bone resorption. Recent studies have used Ni2+ as a surrogate CaR agonist to elicit changes in cytosolic [Ca2+]. This article examines the effects of membrane potential changes on the kinetics of the cytosolic [Ca2+] signal resulting from such Ni(2+)-induced CaR activation. Membrane potential was altered through variations in the extracellular [K] in combination with applications of the K+ ionophore, valinomycin. Membrane potential changes were confirmed by independent electrophysiological patch clamp studies of whole osteoclasts. The application of valinomycin produced a distinct, sustained elevation of cytosolic [Ca2+] in single fura 2-loaded cells, a "primary" response. This response was independent of valinomycin concentration (between 5 nM to 5 microM) and persisted in Ca(2+)-free, EGTA-containing solutions. It also persisted both in high (105 mM) and low (5 mM) extracellular [K+]. A gradual "secondary" elevation of cytosolic [Ca2+] then followed with the continued application of valinomycin, but this was eliminated by sequestering the extracellular [Ca2+] or by increasing extracellular [K+] from 5 to 105 mM. In a separate set of experiments, the presence of 5 microM [valinomycin]-([K+] = 5 mM) prolonged the cytosolic [Ca2+] signal elicited by 50 microM-[Ni2+] application. These prolonged kinetics persisted in low extracellular [Ca2+] (zero-added Ca2+), but reverted to a rapid time-course in the presence of 105 mM-[K+] or at higher [Ni2+] (500 microM and 5 mM). The experiments thus indicate that membrane voltage modifies the kinetics of CaR activation by Ni2+ and therefore suggests that the CaR is an integral protein in the osteoclast surface membrane.

Original publication

DOI

10.1002/jcp.1041620102

Type

Journal article

Journal

Journal of cellular physiology

Publication Date

01/1995

Volume

162

Pages

1 - 8

Addresses

St. George's Hospital Medical School, London, United Kingdom.

Keywords

Cells, Cultured, Cell Membrane, Cytosol, Osteoclasts, Animals, Rats, Rats, Wistar, Potassium, Calcium, Nickel, Valinomycin, Receptors, Cell Surface, Membrane Potentials, Dose-Response Relationship, Drug