Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We demonstrated recently that the divalent cation-sensing receptor on the osteoclast, the Ca2+ receptor (CaR), is a functional component of a cell surface-expressed ryanodine receptor-like molecule (RyR). The objective of the present study was to further characterize this putative RyR by use of the two well-known cell-impermeant RyR modulators, ruthenium red and adenosine 3',5'-cyclic diphosphate ribose (cADPr). We found that, when applied extracellularly, ruthenium red (5 x 10(-8)-10(-4) M) and cADPr (5 x 10(-6) M) triggered an elevation of cytosolic [Ca2+]. Depolarization of the cell membrane by the application of 0.1 M K+ in the presence of 5 x 10(-6) M. valinomycin resulted in a concentration-dependent increase in the magnitude of the cytosolic Ca2+ response to extracellular ruthenium red (5 x 10(-9) and 5 x 10(-5) M), a phenomenon that was not seen when osteoclasts were hyperpolarized using 5 x 10(-3) M K+ with 5 x 10(-6) M valinomycin. In the presence of an intact nonleaky cell membrane, these results would favor a plasma membrane locus of action for the two modulators. Furthermore, pretreatment of osteoclasts with either modulator resulted in a markedly attenuated cytosolic Ca2+ transient elicited in response to the CaR agonist Ni2+, thus confirming an interaction between the cADPr- and ruthenium red-sensitive sites and the osteoclast CaR. The inhibition of the cytosolic Ca2+ response to Ni2+ induced by ruthenium red remained unchanged in the face of membrane potential changes. Finally, the cytosolic Ca2+ response to caffeine (5 x 10(-4) M), another RyR modulator, was also strongly attenuated by pretreatment with 5 x 10(-9) M ruthenium red. We conclude that ruthenium red and cADPr act on plasma membrane-resident sites and that both these sites interact with the process of divalent cation sensing.

Type

Journal article

Journal

The American journal of physiology

Publication Date

03/1996

Volume

270

Pages

F469 - F475

Addresses

Bone Research Unit, St. George's Hospital Medical School, London, United Kingdom.

Keywords

Cells, Cultured, Osteoclasts, Animals, Rats, Rats, Wistar, Ruthenium Red, Calcium, Adenosine Diphosphate Ribose, Coloring Agents