Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Cytosolic [Ca2+] was measured in single osteoclasts using fura-2 in experiments investigating the effects of Ca2+ "receptor" activation using thapsigargin as a means of depleting intracellular Ca2+ stores. Application of 4 microM thapsigargin to osteoclasts in Ca(2+)-free solutions resulted in an elevation of cytosolic [Ca2+]. Under similar conditions, activation of the osteoclast Ca2+ receptor by the substitute divalent cation agonist, Ni2+, resulted in a transient elevation of cytosolic [Ca2+]. In both instances, restoration of extracellular [Ca2+] to 1.25 mM resulted in an "overshoot" of cytosolic [Ca2+]. Prior depletion of intracellular Ca2+ stores by thapsigargin markedly reduced the magnitude of the cytosolic [Ca2+] response to a subsequent application of 5 mM Ni2+. The application of 2 microM thapsigargin to intercept the falling phase of the Ni(2+)-induced cytosolic Ca2+ signal resulted in a sustained elevation of cytosolic [Ca2+], which was terminated by a second application of the same Ni2+. Furthermore, the sustained elevation of cytosolic [Ca2+] induced by thapsigargin application alone was abolished by late application of Ni2+. We conclude that activation of the surface membrane Ca2+ receptor on the osteoclast results in the cytosolic release of Ca2+ from intracellular storage organelles; the refilling of such stores depends upon a thapsigargin-sensitive Ca(2+)-ATPase; store depletion induces capacitative Ca2+ influx; and the Ca2+ influx pathway is sensitive to blockade by Ni2+.

Original publication

DOI

10.1002/jbmr.5650080809

Type

Journal article

Journal

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research

Publication Date

08/1993

Volume

8

Pages

961 - 967

Addresses

Bone and Mineral Metabolism Unit, St. George's Hospital Medical School, London, England.

Keywords

Cytosol, Osteoclasts, Animals, Rats, Rats, Wistar, Calcium, Nickel, Terpenes, Thapsigargin, Fura-2, Models, Biological, Calcium-Transporting ATPases