Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

T cell recognition of foreign Ag/MHC class II complexes is sensitive down to approximately 100 complexes per cell or approximately 0.2 complexes/micron2. To better understand the physical basis of the recognition stage of Ag presentation, we examined adhesion of the lysozyme- specific T cell hybridoma, 3A9, to artificial bilayers containing covalent MHC class II/peptide complexes or adhesion molecules. Adhesion of 3A9 cells required a superphysiologic density of the MHC class II/peptide complex and was partly dependent on CD4; cells adhered but did not crawl. No adhesion was observed to bilayers containing MHC class II molecules without the lysozyme peptide. Activated 3A9 cells adhered and crawled on bilayers containing ICAM-1. The physical strength of contacts was tested with fluid shear. 3A9 cells adherent to bilayers containing MHC class II/peptide complexes shed their contact, which remained on the substrate and contained TCR. In contrast, 3A9 cells peeled from the ICAM-1 bilayer, and held firmly on LFA-1 bilayers; in a manner dependent on filamentous actin. When ICAM-1 and the MHC/peptide complexes were combined, the 3A9 cells adhered tightly and spread, but did not crawl, on the bilayers and TCR clustered at the center of the contact area. Physiologically, the TCR is unlikely to directly initiate adhesion. TCR clusters formed with the assistance of adhesion mechanisms may have to be shed to allow de-adhesion, and this may contribute to TCR down-regulation.

Type

Journal article

Journal

J immunol

Publication Date

01/09/1996

Volume

157

Pages

2014 - 2021

Keywords

Animals, Cell Adhesion, Cell Communication, Histocompatibility Antigens Class II, Hybridomas, Lipid Bilayers, Mice, Peptides, Receptors, Antigen, T-Cell, T-Lymphocytes