Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Pathways involved in DCIS stem and progenitor signalling are poorly understood yet are critical to understand DCIS biology and to develop new therapies. Notch and ErbB1/2 receptor signalling cross talk has been demonstrated in invasive breast cancer, but their role in DCIS stem and progenitor cells has not been investigated. We have utilised 2 DCIS cell lines, MCF10DCIS.com (ErbB2-normal) and SUM225 (ErbB2-overexpressing) and 7 human primary DCIS samples were cultured in 3D matrigel and as mammospheres in the presence, absence or combination of the Notch inhibitor, DAPT, and ErbB1/2 inhibitors, lapatinib or gefitinib. Western blotting was applied to assess downstream signalling. In this study we demonstrate that DAPT reduced acini size and mammosphere formation in MCF10DCIS.com whereas there was no effect in SUM225. Lapatinb reduced acini size and mammosphere formation in SUM225, whereas mammosphere formation and Notch1 activity were increased in MCF10DCIS.com. Combined DAPT/lapatinib treatment was more effective at reducing acini size in both DCIS cell lines. Mammosphere formation in cell lines and human primary DCIS was reduced further by DAPT/lapatinib or DAPT/gefitinib regardless of ErbB2 receptor status. Our pre-clinical human models of DCIS demonstrate that Notch and ErbB1/2 both play a role in DCIS acini growth and stem cell activity. We report for the first time that cross talk between the two pathways in DCIS occurs regardless of ErbB2 receptor status and inhibition of Notch and ErbB1/2 was more efficacious than either alone. These data provide further understanding of DCIS biology and suggest treatment strategies combining Notch and ErbB1/2 inhibitors should be investigated regardless of ErbB2 receptor status.

Original publication

DOI

10.1371/journal.pone.0056840

Type

Journal article

Journal

PloS one

Publication Date

01/2013

Volume

8

Addresses

Cancer Stem Cell Research, University of Manchester, Manchester Academic Health Science Centre, Paterson Institute for Cancer Research, The Christie NHS Foundation Trust, Manchester, United Kingdom. gfarnie@picr.man.ac.uk

Keywords

Cell Line, Tumor, Humans, Carcinoma, Intraductal, Noninfiltrating, Breast Neoplasms, Receptor Protein-Tyrosine Kinases, Receptor, Epidermal Growth Factor, Receptor, erbB-2, Protein Kinase Inhibitors, Receptor Cross-Talk, Receptors, Notch, Neoplastic Stem Cells, Molecular Targeted Therapy, Acinar Cells