Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA(+)/CD44(+)/CD24(low). Using these breast cancer stem cell populations, we compared the activation status of Notch receptors with the status in luminally differentiated cells, and we evaluated the consequences of pathway inhibition in vitro and in vivo. We found that Notch4 signaling activity was 8-fold higher in stem cell-enriched cell populations compared with differentiated cells, whereas Notch1 signaling activity was 4-fold lower in the stem cell-enriched cell populations. Pharmacologic or genetic inhibition of Notch1 or Notch4 reduced stem cell activity in vitro and reduced tumor formation in vivo, but Notch4 inhibition produced a more robust effect with a complete inhibition of tumor initiation observed. Our findings suggest that Notch4-targeted therapies will be more effective than targeting Notch1 in suppressing breast cancer recurrence, as it is initiated by breast cancer stem cells.

Type

Journal article

Journal

Cancer research

Publication Date

12/01/2010

Volume

70

Pages

709 - 718

Addresses

Breast Biology Group, School of Cancer, Enabling Sciences and Technology, Paterson Institute for Cancer Research, University of Manchester, Manchester Academic Health Sciences Centre, The Christie NHS Foundation Trust; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom.

Keywords

Cell Line, Tumor, Animals, Mice, Knockout, Humans, Mice, Mice, Nude, Breast Neoplasms, Antigens, CD44, Membrane Proteins, Proto-Oncogene Proteins, Signal Transduction, Receptors, Notch, Receptor, Notch1, Antigens, CD24, Neoplastic Stem Cells