Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The in vitro corrosion mechanism of the biodegradable cast Mg-10% Ca binary alloy in Hanks' solution was evaluated through transmission electron microscopy observations. The corrosion behavior depends strongly on the microstructural peculiarity of Mg₂Ca phase surrounding the island-like primary Mg phase and the fast corrosion induced by the interdiffusion of O and Ca via the Mg₂Ca phase of lamellar structure. At the corrosion front, we found that a nanosized crack-like pathway was formed along the interface between the Mg₂Ca phase and the primary Mg phase. Through the crack-like pathway, O and Ca are atomically exchanged each other and then the corroded Mg₂Ca phase was transformed to Mg oxides. The in vitro corrosion by the exchange of Ca and O at the nanosized pathway led to the rapid bulk corrosion in the Mg-Ca alloys.

Original publication

DOI

10.1017/S1431927613012683

Type

Journal article

Journal

Microsc microanal

Publication Date

08/2013

Volume

19 Suppl 5

Pages

210 - 214