Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: A surprising feature of the inflammatory infiltrate in rheumatoid arthritis is the accumulation of neutrophils within synovial fluid and at the pannus cartilage boundary. Recent findings suggest that a distinct subset of IL-17-secreting T-helper cells (TH17 cells) plays a key role in connecting the adaptive and innate arms of the immune response and in regulating neutrophil homeostasis. We therefore tested the hypothesis that synovial fibroblasts bridge the biological responses that connect TH17 cells to neutrophils by producing neutrophil survival factors following their activation with IL-17. METHODS: IL-17-expressing cells in the rheumatoid synovium, and IL-17-expressing cells in the peripheral blood, and synovial fluid were examined by confocal microscopy and flow cytometry, respectively. Peripheral blood neutrophils were cocultured either with rheumatoid arthritis synovial fibroblasts (RASF) or with conditioned medium from RASF that had been pre-exposed to recombinant human IL-17, TNFalpha or a combination of the two cytokines. Neutrophils were harvested and stained with the vital mitochondrial dye 3,3'-dihexyloxacarbocyanine iodide before being enumerated by flow cytometry. RESULTS: TH17-expressing CD4+ cells were found to accumulate within rheumatoid synovial tissue and in rheumatoid arthritis synovial fluid. RASF treated with IL-17 and TNFalpha (RASFIL-17/TNF) effectively doubled the functional lifespan of neutrophils in coculture. This was entirely due to soluble factors secreted from the fibroblasts. Specific depletion of granulocyte-macrophage colony-stimulating factor from RASFIL-17/TNF-conditioned medium demonstrated that this cytokine accounted for approximately one-half of the neutrophil survival activity. Inhibition of phosphatidylinositol-3-kinase and NF-kappaB pathways showed a requirement for both signalling pathways in RASFIL-17/TNF-mediated neutrophil rescue. CONCLUSION: The increased number of neutrophils with an extended lifespan found in the rheumatoid synovial microenvironment is partly accounted for by IL-17 and TNFalpha activation of synovial fibroblasts. TH17-expressing T cells within the rheumatoid synovium are likely to contribute significantly to this effect.

Original publication

DOI

10.1186/ar2406

Type

Journal article

Journal

Arthritis res ther

Publication Date

2008

Volume

10

Keywords

Adult, Aged, Arthritis, Rheumatoid, CD4-Positive T-Lymphocytes, Cell Survival, Female, Fibroblasts, Flow Cytometry, Granulocyte-Macrophage Colony-Stimulating Factor, Humans, Interleukin-17, Male, Microscopy, Confocal, Middle Aged, Neutrophils, Synovial Membrane, T-Lymphocyte Subsets, Tumor Necrosis Factor-alpha