Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Prediction models are only sparsely available for metastatic oesophagogastric cancer. Because treatment in this setting is often preference-based, decision-making with the aid of a prediction model is wanted. The aim of this study is to construct a prediction model, called SOURCE, for the overall survival in patients with metastatic oesophagogastric cancer. Data from patients with metastatic oesophageal (n = 8010) or gastric (n = 4763) cancer diagnosed during 2005⁻2015 were retrieved from the nationwide Netherlands cancer registry. A multivariate Cox regression model was created to predict overall survival for various treatments. Predictor selection was performed via the Akaike Information Criterion and a Delphi consensus among experts in palliative oesophagogastric cancer. Validation was performed according to a temporal internal-external scheme. The predictive quality was assessed with the concordance-index (c-index) and calibration. The model c-indices showed consistent discriminative ability during validation: 0.71 for oesophageal cancer and 0.68 for gastric cancer. The calibration showed an average slope of 1.0 and intercept of 0.0 for both tumour locations, indicating a close agreement between predicted and observed survival. With a fair c-index and good calibration, SOURCE provides a solid foundation for further investigation in clinical practice to determine its added value in shared decision making.

Original publication




Journal article


Cancers (basel)

Publication Date





Cox regression, Delphi consensus, gastric cancer, metastasis, oesophageal cancer, prediction model