Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL-4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL-4-activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL-4-activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti-inflammatory to a pro-inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization.

Original publication

DOI

10.15252/embj.2018100299

Type

Journal article

Journal

Embo j

Publication Date

03/06/2019

Volume

38

Keywords

macrophage scavenger receptor 1, phagosome, proteomics, scavenger receptor, tumour‐associated macrophages