Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The effects of six natural vitamin D metabolites of potential biological and therapeutic interest, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), 25-hydroxyvitamin D3 (25-OH-D3), 24R,25-dihydroxyvitamin D3 (24R,25-(OH)2D3), 1,24R,25-trihydroxyvitamin D3 (1,24R,25-(OH)3D3), 25S,26-dihydroxyvitamin D3 (25S,26-(OH)2D3) and 1,25S,26-trihydroxyvitamin D3 (1,25S,26-(OH)3D3) on cell replication and expression of the osteoblastic phenotype in terms of osteocalcin production were examined in cultured human bone cells. At a dose of 5 X 10(-12) mol/1, 1,25-(OH)2D3 stimulated cell proliferation, whereas at higher doses (5 X 10(-9)-5 X 10(-6) mol/1) cell growth was inhibited in a dose-dependent manner. The same pattern of effects was seen for the other metabolites in a rank order of potency: 1,25-(OH)2D3 greater than 1,25S,26-(OH)3D3 = 1,24R,25-(OH)3D3 greater than 25S,26-(OH)2D3 = 24R,25-(OH)2D3 = 25-OH-D3. Synthesis of osteocalcin was induced by 1,25-(OH)2D3 in doses similar to those required to inhibit cell proliferation. Biphasic responses were observed for some of the metabolites in terms of osteocalcin synthesis, inhibitory effects becoming apparent at 5 X 10(-6) mol/1. The cells did not secrete osteocalcin spontaneously. These results indicate that vitamin D metabolites may regulate growth and expression of differentiated functions of normal human osteoblasts.

Original publication

DOI

10.1677/joe.0.1050391

Type

Journal article

Journal

J endocrinol

Publication Date

06/1985

Volume

105

Pages

391 - 396

Keywords

24,25-Dihydroxyvitamin D 3, Calcifediol, Calcitriol, Calcium-Binding Proteins, Cell Division, Dihydroxycholecalciferols, Humans, Hydroxycholecalciferols, In Vitro Techniques, Osteoblasts, Osteocalcin, Vitamin D