Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

17Beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the NAD(P)(H) dependent oxidoreduction at C17 oxo/beta-hydroxyl groups of androgen and estrogen hormones. This reversible reaction constitutes an important pre-receptor control mechanism for nuclear receptor ligands, since the conversion "switches" between the 17beta-OH receptor ligands and their inactive 17-oxo metabolites. At present, 14 mammalian 17beta-HSDs are described, of which at least 11 exist within the human genome, encoded by different genes. The enzymes differ in their expression pattern, nucleotide cofactor preference, steroid substrate specificity and subcellular localization, and thus constitute a complex system ensuring cell-specific adaptation and regulation of sex steroid hormone levels. Broad and overlapping substrate specificities with enzymes involved in lipid metabolism suggest interactions of several 17beta-HSDs with other metabolic pathways. Several 17beta-HSDs enzymes constitute promising drug targets, of particular importance in cancer, metabolic diseases, neurodegeneration and possibly immunity.

Original publication

DOI

10.1016/j.mce.2005.12.007

Type

Journal article

Journal

Molecular and cellular endocrinology

Publication Date

03/2006

Volume

248

Pages

61 - 71

Addresses

Structural Genomics Consortium, University of Oxford, Oxford OX3 7LD, United Kingdom. petra.lukacik@sgc.ox.ac.uk

Keywords

Humans, 17-Hydroxysteroid Dehydrogenases, Protein Conformation, Substrate Specificity