Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates.

Original publication

DOI

10.1093/nar/gkab727

Type

Journal article

Journal

Nucleic acids research

Publisher

Oxford University Press (OUP)

Publication Date

20/08/2021