Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Because of the lack of suitable in vivo models of giant cell tumor of bone (GCT), little is known about its underlying fundamental pro-tumoral events, such as tumor growth, invasion, angiogenesis and metastasis. There is no existing cell line that contains all the cell and tissue tumor components of GCT and thus in vitro testing of anti-tumor agents on GCT is not possible. In this study we have characterized a new method of growing a GCT tumor on a chick chorio-allantoic membrane (CAM) for this purpose. METHODS: Fresh tumor tissue was obtained from 10 patients and homogenized. The suspension was grafted onto the CAM at day 10 of development. The growth process was monitored by daily observation and photo documentation using in vivo biomicroscopy. After 6 days, samples were fixed and further analyzed using standard histology (hematoxylin and eosin stains), Ki67 staining and fluorescence in situ hybridization (FISH). RESULTS: The suspension of all 10 patients formed solid tumors when grafted on the CAM. In vivo microscopy and standard histology revealed a rich vascularization of the tumors. The tumors were composed of the typical components of GCT, including (CD51+/CD68+) multinucleated giant cells which were generally less numerous and contained fewer nuclei than in the original tumors. Ki67 staining revealed a very low proliferation rate. The FISH demonstrated that the tumors were composed of human cells interspersed with chick-derived capillaries. CONCLUSIONS: A reliable protocol for grafting of human GCT onto the chick chorio-allantoic membrane is established. This is the first in vivo model for giant cell tumors of bone which opens new perspectives to study this disease and to test new therapeutical agents.

Type

Journal article

Journal

BMC cancer

Publication Date

01/2011

Volume

11

Addresses

Department of Trauma and Orthopedic Surgery, University of Witten-Herdecke, Cologne-Merheim Medical Center, Ostmerheimer Str, Cologne, Germany. maurice.balke@gmail.com

Keywords

Osteoclasts, Chick Embryo, Animals, Humans, Giant Cell Tumor of Bone, Bone Neoplasms, Disease Models, Animal, In Situ Hybridization, Fluorescence, Xenograft Model Antitumor Assays, Interphase, Adolescent, Adult, Aged, Middle Aged, Female, Male, Young Adult