Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Machine learning (ML) methods are promising and scalable alternatives for propensity score (PS) estimation, but their comparative performance in disease risk score (DRS) estimation remains unexplored. METHODS: We used real-world data comparing antihypertensive users to non-users with 69 negative control outcomes, and plasmode simulations to study the performance of ML methods in PS and DRS estimation. We conducted a cohort study using UK primary care records. Further, we conducted a plasmode simulation with synthetic treatment and outcome mimicking empirical data distributions. We compared four PS and DRS estimation methods: 1. Reference: Logistic regression including clinically chosen confounders. 2. Logistic regression with L1 regularisation (LASSO). 3. Multi-layer perceptron (MLP). 4. Extreme Gradient Boosting (XgBoost). Covariate balance, coverage of the null effect of negative control outcomes (real-world data) and bias based on the absolute difference between observed and true effects (for plasmode) were estimated. 632,201 antihypertensive users and nonusers were included. RESULTS: ML methods outperformed the reference method for PS estimation in some scenarios, both in terms of covariate balance and coverage/bias. Specifically, XgBoost achieved the best performance. DRS-based methods performed worse than PS in all tested scenarios. DISCUSSION: We found that ML methods could be reliable alternatives for PS estimation. ML-based DRS methods performed worse than PS ones, likely given the rarity of outcomes.

Original publication

DOI

10.3389/fphar.2024.1395707

Type

Journal article

Journal

Front pharmacol

Publication Date

2024

Volume

15

Keywords

disease risk scores, machine learning, negative control, observational research, propensity scores, treatment effect