Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sclerostin inhibitors protect against osteoporotic fractures, but their cardiovascular safety remains unclear. We conducted a cis-Mendelian randomisation analysis to estimate the causal effect of sclerostin levels on cardiovascular risk factors. We meta-analysed three GWAS of sclerostin levels including 49,568 Europeans and selected 2 SNPs to be used as instruments. We included heel bone mineral density and hip fracture risk as positive control outcomes. Public GWAS and UK Biobank patient-level data were used for the study outcomes, which include cardiovascular events, risk factors, and biomarkers. Lower sclerostin levels were associated with higher bone mineral density and 85% reduction in hip fracture risk. However, genetically predicted lower sclerostin levels led to 25-85% excess coronary artery disease risk, 40% to 60% increased risk of type 2 diabetes, and worse cardiovascular biomarkers values, including higher triglycerides, and decreased HDL cholesterol levels. Results also suggest a potential (but borderline) association with increased risk of myocardial infarction. Our study provides genetic evidence of a causal relationship between reduced levels of sclerostin and improved bone health and fracture protection, but increased risk of cardiovascular events and risk factors.

Original publication

DOI

10.1038/s41467-024-53623-5

Type

Journal article

Journal

Nat commun

Publication Date

13/11/2024

Volume

15

Keywords

Humans, Adaptor Proteins, Signal Transducing, Polymorphism, Single Nucleotide, Bone Density, Genome-Wide Association Study, Biomarkers, Mendelian Randomization Analysis, Risk Factors, Cardiovascular Diseases, Diabetes Mellitus, Type 2, Genetic Markers, Male, Female, Hip Fractures, Osteoporotic Fractures, Middle Aged, Aged, Myocardial Infarction