Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Environmental signals from the extracellular matrix (ECM) are transmitted by cell surface receptors that connect to the actin cytoskeleton and to multiple intracellular signaling pathways. To dissect how the ECM regulates cell functions, we are using a three-dimensional (3D) fibrin-fibronectin matrix, resembling the wound provisional matrix. Fibroblasts adhere to fibronectin in this matrix via concomitant engagement of alpha 5 beta 1 integrin receptors and syndecan-4, a transmembrane proteoglycan. An adhesive phenotype is developed with actin stress fibers and activation of focal adhesion kinase (FAK) and Rho GTPase. Lack of syndecan-4 engagement, as occurs in the presence of the ECM protein tenascin-C, promotes a motile phenotype; FAK and Rho signaling are downregulated and filopodia are extended. Fibronectin matrices have distinct effects on two other receptors: alpha 4 beta 1 and beta v beta 3 integrins. Although alpha 4 beta 1 does not naturally support strong cell interactions with a fibrin-fibronectin matrix, binding is dramatically enhanced by proteolytic cleavage of fibronectin. Conversely, activity of alpha v beta 3 is stimulated by multimeric fibronectin fibrils showing that the organization of fibronectin differentially affects integrin functions. Thus, deposition of additional ECM components, expression of co-receptors for ECM, cleavage of adhesive proteins, and the architecture of the ECM microenvironment are different mechanisms for modulating cell responses to fibronectin matrix.

Type

Journal article

Journal

The journal of investigative dermatology. Symposium proceedings

Publication Date

09/2006

Volume

11

Pages

73 - 78

Addresses

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.

Keywords

Extracellular Matrix, Animals, Humans, rhoA GTP-Binding Protein, Fibronectins, Integrin alpha4beta1, Receptors, Cell Surface, Tenascin, Wound Healing, Cell Communication, Signal Transduction, Focal Adhesion Protein-Tyrosine Kinases