Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Osteoporosis and low bone mass are currently estimated to be a major public health risk affecting >50% of the female population over the age of 50. Because of their bone-selective pharmacokinetics, nitrogen-containing bisphosphonates (N-BPs), currently used as clinical inhibitors of bone-resorption diseases, target osteoclast farnesyl pyrophosphate synthase (FPPS) and inhibit protein prenylation. FPPS, a key branchpoint of the mevalonate pathway, catalyzes the successive condensation of isopentenyl pyrophosphate with dimethylallyl pyrophosphate and geranyl pyrophosphate. To understand the molecular events involved in inhibition of FPPS by N-BPs, we used protein crystallography, enzyme kinetics, and isothermal titration calorimetry. We report here high-resolution x-ray structures of the human enzyme in complexes with risedronate and zoledronate, two of the leading N-BPs in clinical use. These agents bind to the dimethylallyl/geranyl pyrophosphate ligand pocket and induce a conformational change. The interactions of the N-BP cyclic nitrogen with Thr-201 and Lys-200 suggest that these inhibitors achieve potency by positioning their nitrogen in the proposed carbocation-binding site. Kinetic analyses reveal that inhibition is competitive with geranyl pyrophosphate and is of a slow, tight binding character, indicating that isomerization of an initial enzyme-inhibitor complex occurs with inhibitor binding. Isothermal titration calorimetry indicates that binding of N-BPs to the apoenzyme is entropy-driven, presumably through desolvation entropy effects. These experiments reveal the molecular binding characteristics of an important pharmacological target and provide a route for further optimization of these important drugs.

Original publication

DOI

10.1073/pnas.0601643103

Type

Journal article

Journal

Proc natl acad sci u s a

Publication Date

16/05/2006

Volume

103

Pages

7829 - 7834

Keywords

Animals, Bone Density Conservation Agents, Crystallography, X-Ray, Diphosphonates, Etidronic Acid, Female, Geranyltranstransferase, Humans, Imidazoles, Models, Molecular, Molecular Sequence Data, Molecular Structure, Nitrogen, Protein Binding, Protein Conformation, Recombinant Proteins, Risedronic Acid, Zoledronic Acid