Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

During immune surveillance, T cells survey the surface of antigen-presenting cells. In searching for peptide-loaded major histocompatibility complexes (pMHCs), they must solve a classic trade-off between speed and sensitivity. It has long been supposed that microvilli on T cells act as sensory organs to enable search, but their strategy has been unknown. We used lattice light-sheet and quantum dot-enabled synaptic contact mapping microscopy to show that anomalous diffusion and fractal organization of microvilli survey the majority of opposing surfaces within 1 minute. Individual dwell times were long enough to discriminate pMHC half-lives and T cell receptor (TCR) accumulation selectively stabilized microvilli. Stabilization was independent of tyrosine kinase signaling and the actin cytoskeleton, suggesting selection for avid TCR microclusters. This work defines the efficient cellular search process against which ligand detection takes place.

Original publication

DOI

10.1126/science.aal3118

Type

Journal article

Journal

Science (New York, N.Y.)

Publication Date

05/2017

Volume

356

Addresses

Department of Pathology, University of California, San Francisco, CA 94143, USA.