Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new study published in Circulation Research shows that CD200, an inhibitory immune checkpoint, reduces the development of atherosclerosis.

Illustration of artherosclerosis © SHUTTERSTOCK

Atherosclerosis is a disease in which fatty substances build-up within an artery, creating a plaque. Inflammatory processes, in particular monocyte and macrophage supply and recruitment, are key to the development of atherosclerosis, which over time can harden the arteries, restricting blood flow and oxygen supply to vital organs and increasing the risk of serious complications of cardiovascular disease such as strokes and heart attacks. 

During the study Claudia Monaco, lead author, found that CD200 deficiency led to increased monopoiesis and an accumulation of monocytes and macrophages during atherogenesis, leading to worse atherosclerosis. However, by administrating a CD200-Fusion protein to activate the pathway, the team found that neointima formation, was reduced. 

“Both systemic and local components of the immune system are important in atherogenesis, and CD200 can regulate both systemic and local inflammatory factors by acting within the artery wall but also on monopoiesis in the bone marrow,” said Claudia.  

CD200 controls macrophage activation by interacting with the inhibitory receptor CD200R. The CD200 - CD200R pathway was shown to restrain activation of CD200R+ lesional macrophages, their production of CCR2 ligands, and monocyte recruitment in vitro and in vivo in an air pouch model. 

Bone marrow chimera experiments performed by the team revealed that the CD200 – CD200R pathway enables two complementary and tissue dependent strategies to limit atherogenesisCD200 expression by bone-marrow derived cells limits systemic monocytosis, while CD200 expression by non-haematopoietic cells, for example endothelial cells, prevents local plaque growth, said Claudia. 

This is the first study to reveal a role for the CD200/CD200R pathway in atherosclerosis and it makes it a possible target for finding a potential therapeutic pathway to treat cardiovascular disease. This research was supported by the British Heart Foundation, The European Commission, the Kennedy trustees and the Novo Nordisk Foundation. 

The research is explained in Nature Reviews Cardiology. 

Similar stories

Professor Chris Buckley joins the Kennedy Institute as Director of Clinical Research

Moving to the University of Oxford with the Arthritis Therapy Acceleration Programme (A-TAP) will help accelerate the discovery of new treatments for inflammatory diseases.

Behind enemy lines: research finds a new ally in the fight against cardiovascular disease hidden within the vessel wall itself

A new study reveals the existence of a powerful ally in the fight against cardiovascular disease, a protective subset of vascular macrophages expressing the C-type lectin receptor CLEC4A2, a molecule which fosters “good” macrophage behaviour within the vessel wall.

More effective treatment found for patients hospitalised with COVID-19 pneumonia

A proof-of-concept trial involving Oxford researchers has identified a drug that may benefit some patients hospitalised with COVID-19 pneumonia.

NDORMS researchers honoured in the Recognition Of Distinction Scheme 2021

Sally Hopewell and John Christianson have been awarded the title of ‘Full Professor’ in the University of Oxford’s Recognition Of Distinction Scheme 2021.

New Oxford-Zeiss Centre of Excellence opens at the University of Oxford

The Kennedy Institute for Rheumatology and the Institute of Developmental and Regenerative Medicine announce the launch of the Oxford-Zeiss Centre of Excellence, providing state-of-the-art imaging technologies to lead future discoveries in global health and disease.

HOPE-c opens up for recruitment

Researchers in the Centre for OA Pathogenesis Versus Arthritis at the Kennedy Institute of Rheumatology and Imperial College London are looking to recruit adults with painful hand osteoarthritis for an observational study to help uncover why people living with the condition experience different patterns of pain.