Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new study published in Circulation Research shows that CD200, an inhibitory immune checkpoint, reduces the development of atherosclerosis.

Illustration of artherosclerosis © SHUTTERSTOCK

Atherosclerosis is a disease in which fatty substances build-up within an artery, creating a plaque. Inflammatory processes, in particular monocyte and macrophage supply and recruitment, are key to the development of atherosclerosis, which over time can harden the arteries, restricting blood flow and oxygen supply to vital organs and increasing the risk of serious complications of cardiovascular disease such as strokes and heart attacks. 

During the study Claudia Monaco, lead author, found that CD200 deficiency led to increased monopoiesis and an accumulation of monocytes and macrophages during atherogenesis, leading to worse atherosclerosis. However, by administrating a CD200-Fusion protein to activate the pathway, the team found that neointima formation, was reduced. 

“Both systemic and local components of the immune system are important in atherogenesis, and CD200 can regulate both systemic and local inflammatory factors by acting within the artery wall but also on monopoiesis in the bone marrow,” said Claudia.  

CD200 controls macrophage activation by interacting with the inhibitory receptor CD200R. The CD200 - CD200R pathway was shown to restrain activation of CD200R+ lesional macrophages, their production of CCR2 ligands, and monocyte recruitment in vitro and in vivo in an air pouch model. 

Bone marrow chimera experiments performed by the team revealed that the CD200 – CD200R pathway enables two complementary and tissue dependent strategies to limit atherogenesisCD200 expression by bone-marrow derived cells limits systemic monocytosis, while CD200 expression by non-haematopoietic cells, for example endothelial cells, prevents local plaque growth, said Claudia. 

This is the first study to reveal a role for the CD200/CD200R pathway in atherosclerosis and it makes it a possible target for finding a potential therapeutic pathway to treat cardiovascular disease. This research was supported by the British Heart Foundation, The European Commission, the Kennedy trustees and the Novo Nordisk Foundation. 

The research is explained in Nature Reviews Cardiology. 

Similar stories

Doctor Ghada Alsaleh awarded a Versus Arthritis Career Development Fellowship

Postdoctoral Researcher Ghada Alsaleh has been awarded a research grant by Versus Arthritis which she will use to develop a new therapy for osteoarthritis.

Study finds marked differences in the use of ankle replacements across six countries

A new study published in Foot and Ankle International reviews the use of ankle replacements across 6 countries to predict why there is a variance in their use, and to determine how far current demands are being met.

NDORMS wins government funding to develop AI for bone health

A state-of-the-art method that uses artificial intelligence to check bone health and reduce fracture risk has been successful in the latest round of the Artificial Intelligence in Health and Care Award.

COVID-19 vaccine safety monitoring should account for age, gender, and database differences

The largest, most extensive global network study on background rates for adverse events of special interest identifies important age, sex and database differences that should inform future safety surveillance efforts.

Professor Keith Willett recognised in Queen’s Birthday Honours

Professor of Orthopaedic Trauma Surgery at NDORMS, Keith Willett becomes a Knight Bachelor for services to the NHS.

Professor Dani Prieto-Alhambra elected to ISPE Board of Directors

Dani Prieto-Alhambra, Professor of Pharmaco- and Device Epidemiology at NDORMS, has been elected as the Academic representative for Europe and Africa on the International Society of Pharmaco-Epidemiology Board of Directors.