Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Interactive 3D models of human joints, showing how common medical complaints have arisen and how we are likely to evolve in the future, have been created at NDORMS.

The researchers created 3D computer models of human joints by compiling 128 slice CT scans of bones from humans, early hominids, primates and dinosaurs. In all, they scanned 224 bone specimens.

By using 3D engineering and mathematical methods the group have produced 3D 'morphs' to plot changes in the shapes of species throughout the human lineage. This has provided new insights into the morphological trends associated with common orthopaedic complaints, such as anterior knee pain and shoulder pain.

Extrapolation of these trends has allowed 3D printing of possible future skeletal shapes as humans evolve.

Samples used in the study were from shoulders, hips and knees, and has enabled the researchers to make mathematical comparisons that could be used as planning tools for orthopaedic surgery. By comparing the modern and ancient samples, the team hopes to gain a better insight into the origins and solutions to common orthopaedic complaints.

Dr Paul Monk, who led the research at the Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, said: 'Throughout our lineage we have been adapting the shape of our joints, which leads to a range of new challenges for orthopaedic surgeons. Recently there has been an increase in common problems such as anterior knee pain, and shoulder pain when reaching overhead, which led us to look at how joints originally came to look and function the way they do.

'These models will enable us to identify the root causes of many modern joint conditions, as well as enabling us to anticipate future problems that are likely to begin to appear based on lifestyle and genetic changes.

'Current trends reveal that the modern shapes of joint replacements won’t work in the future, meaning that we will need to re-think our approach for many common surgeries.

'We also wanted to see what we’re all going to look like in the future, and to answer questions such as ‘are we evolving to be taller and faster or weaker’, and ‘might we be evolving to need hip replacements earlier in the future?’'

The specimens scanned include amphibious reptiles (eg. Hellbender), dinosaurs, shrews, tupaiae, lemurs, primates, A. Afarensis (Lucy), H. Erectus (Turkana Boy) and H. Neaderthalis.

The full set of morphs can be viewed online.

Similar stories

Small mechanical forces in immune cells measured at unprecedented sensitivity

Kennedy Main Research

Oxford researchers have used advanced microscopy techniques to measure previously unseen forces generated by cells during an immune response; a breakthrough for mechanobiology and future advances in health and disease.

NDORMS researchers awarded for Dupuytren research

Awards Hand Kennedy Main

Three NDORMS researchers have received awards from the International Dupuytren Society, a patient organisation that brings together Dupuytren Disease patient societies from across the world.

Hope for rheumatoid arthritis patients who are non-responsive to anti-TNF

Arthritis Kennedy Main

New research published in The Lancet shows that tocilizumab is a more effective treatment than rituximab for rheumatoid arthritis patients with a poor response to anti-tumour necrosis factor (TNF).

A new study maps the expression of innate immune receptors during the course of arthritis

Arthritis Kennedy Main

The research, which was a collaboration with researchers from Oxford University and Queen Mary University of London and published in Journal of Autoimmunity, looked at changes in receptors known as toll-like receptors (TLRs) in arthritis at different stages of disease.

International Women's Day

Department Main

It’s International Women's Day! This year’s theme is #Choosetochallenge. We’re celebrating some of the amazing women at NDORMS, and asking them what changes they’d like to see in medical sciences over the next 100 years.

Patients and carers invited to join new group helping to shape research and treatment of bones, muscles and joints

Main PPI

Oxford’s newest patient partner group, OPEN ARMS launches today to explore the causes, treatment and care for patients with musculoskeletal conditions. Its first three patient partners explain why they are involved and invite other members of the public to join the team.