Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New Research from the Kusumbe group at the Kennedy Institute of Rheumatology identifies vascular attrition, marked by pericyte to fibroblast differentiation, as a primary hallmark of aging and highlights organ-specific vascular changes with age.

A montage of images showing 3D scans of mouse spleens and kidneys
From left to right 1 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 2 - Tile scan 3D confocal image showing a mouse spleen with multicolour immunolabeling for endothelial cell and pericyte markers. 3 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers. Blue shows cell nuclei stained with TO-PRO-3. 4 - Tile scan 3D confocal image showing a mouse kidney with multicolour immunolabeling for endothelial cell and pericyte markers.

Cellular and physiological activity in the body declines over time with age, resulting in a loss of tissue and organ function and the potential risk of major health conditions such as cancer or cardiovascular disease. What is less understood are age-related changes in the tissue microenvironment such as the blood vessels.

Blood vessels are an essential component in maintaining tissue function not only because they form vital transport routes around the body, but also because blood vessels engage in signalling with neighbouring cells within the tissues thereby governing their behaviour. For example, blood vessels provide nurturing niches for stem/progenitor cells and regulate their stemness and fate. Therefore, any vascular changes have the potential to reveal microenvironmental triggers impacting the aging process.

For the study which appears in Science Advances Anjali Kusumbe’s group examined 1000’s of confocal images across several murine and human organs. “The cellular aspects of aging have been extensively studied and we understand how they affect tissue function. Our goal was to understand age-related changes to blood vessels, the vascular system, by comparing young and aging tissues from several organs through 3D imaging.” said Anjali.

3D imaging showed the vascular microenvironments of the kidney, muscle, spleen, thymus, liver, lung, uterus, heart, bladder, brain, skin, and the gut. By comparing young and aging tissues from several organs the study revealed a loss of vascular abundance and differentiation of pericytes into fibroblasts as the key features of aging tissue. Pericytes are the cells lining the blood vessels and support vascular functions while fibroblasts are known drivers for disease conditions such as fibrosis and arthritis.

“This vascular attrition is seen at a much earlier stage in the life span of the tissues than the appearance of cellular hallmarks of aging and leads us to conclude that this is a primary hallmark of tissue and organ aging,” said Anjali. 

“We find that pericytes are not only the source of age-associated fibroblast accumulation but pericyte to fibroblast differentiation underlies the pathogenesis of fibrosis and rheumatoid arthritis” added Junyu Chen, first author on the paper and a Postdoctoral Fellow at the Kennedy Institute.

Interestingly, while most organs are affected, the highly remodelling organs such as skin, uterus and gut do not show vascular loss. Potentially by understanding the characteristics of these tissues, strategies to retain and maintain vasculature in aging might be discovered.

The full library of 3D vascular and tissue maps is being been made freely available by the Kennedy Institute of Rheumatology. It contains more than 1000 single-cell–resolution 3D maps with spatial information for exploration and quantitative analyses. The resource will serve as an essential research tool to understand tissue biology in various fields of physiology, aging, matrix, and vascular biology and to investigate functional pathophysiology and therapeutic effects. 

The study was funded by the Medical Research Council (MRC), Kennedy Trust for Rheumatology Research (KTRR) and the European Research Council (ERC).

 

Similar stories

Study reveals the three most important aspects of care for hip fractures

Hip Main OCTRU Research Trauma

Older patients with hip fractures recover better if they receive treatment under the supervision of both a surgeon and a specialist in elderly care; are checked to avoid future falls; and are assessed for memory problems.

Major ERC funding awarded to Professor Michael Dustin

Awards Kennedy Main

Professor Michael Dustin and an international team of collaborators have been awarded a €10M grant from the European Research Council (ERC) to develop a new biotechnology around supramolecular attack particles (SMAPs) engineered to kill cancer cells.

The role of mAbs (neutralising monoclonal antibodies) in the fight against COVID-19

Main Research

Neutralising mAbs, a form of anti-viral medicine, are being explored as an attractive option to treat symptoms of COVID-19 and in some cases prevent infection. But what are the pros and cons of this type of treatment and what should regulators consider before granting approval?

Professor Michael Dustin elected to the National Academy of Sciences

Awards Kennedy Main

Recognised for his outstanding contributions to the field of immunology, Michael becomes the fourth Kennedy professor to be elected to the Academy.

Small mechanical forces in immune cells measured at unprecedented sensitivity

Kennedy Main Research

Oxford researchers have used advanced microscopy techniques to measure previously unseen forces generated by cells during an immune response; a breakthrough for mechanobiology and future advances in health and disease.

NDORMS researchers awarded for Dupuytren research

Awards Hand Kennedy Main

Three NDORMS researchers have received awards from the International Dupuytren Society, a patient organisation that brings together Dupuytren Disease patient societies from across the world.