Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Carpal tunnel syndrome (CTS) is extremely common and typically treated with carpal tunnel decompression (CTD). Although generally an effective treatment, up to 25% of patients do not experience meaningful benefit. Given the prevalence, this amounts to considerable morbidity and cost without return. Being able to reliably predict which patients would benefit from CTD preoperatively would support more patient-centered and value-based care. METHODS: We used registry data from 1916 consecutive patients undergoing CTD for CTS at a regional hand center between 2010 and 2019. Improvement was defined as change exceeding the respective QuickDASH subscale's minimal important change estimate. Predictors included a range of clinical, demographic and patient-reported variables. Data were split into training (75%) and test (25%) sets. A range of machine learning algorithms was developed using the training data and evaluated with the test data. We also used a machine learning technique called chi-squared automatic interaction detection to develop flowcharts that could help clinicians and patients to understand the chances of a patient improving with surgery. RESULTS: The top performing models predicted functional and symptomatic improvement with accuracies of 0.718 (95% confidence interval 0.660, 0.771) and 0.759 (95% confidence interval 0.708, 0.810), respectively. The chi-squared automatic interaction detection flowcharts could provide valuable clinical insights from as little as two preoperative questions. CONCLUSIONS: Patient-reported outcome measures and machine learning can support patient-centered and value-based healthcare. Our algorithms can be used for expectation management and to rationalize treatment risks and costs associated with CTD.

Original publication

DOI

10.1097/GOX.0000000000004279

Type

Journal article

Journal

Plast reconstr surg glob open

Publication Date

04/2022

Volume

10