Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Accurate short-term predictions of COVID-19 cases with empirical models allow Health Officials to prepare for hospital contingencies in a two-three week window given the delay between case reporting and the admission of patients in a hospital. We investigate the ability of Gompertz-type empiric models to provide accurate prediction up to two and three weeks to give a large window of preparation in case of a surge in virus transmission. We investigate the stability of the prediction and its accuracy using bi-weekly predictions during the last trimester of 2020 and 2021. Using data from 2020, we show that understanding and correcting for the daily reporting structure of cases in the different countries is key to accomplish accurate predictions. Furthermore, we found that filtering out predictions that are highly unstable to changes in the parameters of the model, which are roughly 20%, reduces strongly the number of predictions that are way-off. The method is then tested for robustness with data from 2021. We found that, for this data, only 1-2% of the one-week predictions were off by more than 50%. This increased to 3% for two-week predictions, and only for three-week predictions it reached 10%.

Original publication

DOI

10.1038/s41598-024-61233-w

Type

Journal article

Journal

Sci rep

Publication Date

11/05/2024

Volume

14

Keywords

COVID-19, Humans, SARS-CoV-2, Time Factors, Models, Statistical