Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The deployment of AI in medical imaging, particularly in areas such as fracture detection, represents a transformative advancement in orthopaedic care. AI-driven systems, leveraging deep-learning algorithms, promise to enhance diagnostic accuracy, reduce variability, and streamline workflows by analyzing radiograph images swiftly and accurately. Despite these potential benefits, the integration of AI into clinical settings faces substantial barriers, including slow adoption across health systems, technical challenges, and a major lag between technology development and clinical implementation. This commentary explores the role of AI in healthcare, highlighting its potential to enhance patient outcomes through more accurate and timely diagnoses. It addresses the necessity of bridging the gap between AI innovation and practical application. It also emphasizes the importance of implementation science in effectively integrating AI technologies into healthcare systems, using frameworks such as the Consolidated Framework for Implementation Research and the Knowledge-to-Action Cycle to guide this process. We call for a structured approach to address the challenges of deploying AI in clinical settings, ensuring that AI's benefits translate into improved healthcare delivery and patient care.

Original publication

DOI

10.1302/0301-620X.107B6.BJJ-2024-1567.R1

Type

Journal article

Journal

Bone joint j

Publication Date

01/06/2025

Volume

107-B

Pages

582 - 586

Keywords

Humans, Artificial Intelligence, Fractures, Bone