Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers from the University of Oxford and Estonia have found further evidence that a person’s genetic make-up and height can influence whether they will develop carpal tunnel syndrome (CTS).

In the first ever genome-wide association study of CTS, published today in Nature Communications, the researchers from the University of Oxford and the Estonian Genome Center revealed 16 specific locations in chromosomes associated with the condition, and a link between short stature and the risk of developing the condition.

The study, supported by the NIHR Oxford Biomedical Research Centre and the Medical Research Council, used data from over 12,000 CTS patients from the UK Biobank.

CTS is a common and disabling condition of the hand, caused by pressure on a nerve in the wrist. It can be very painful and causes tingling, numbness and weakness of the hand, sometimes leading to severe loss of function.

Approximately one in 20 people in the UK will develop CTS at some point in their life, and CTS surgery is the most commonly performed operation by hand surgeons worldwide. With the number of operations for CTS expected to double between 2011 and 2030, the condition poses a considerable socioeconomic burden.

Despite being so common, the reason why certain people develop CTS is poorly understood, and even less is known about how genes determine who is more likely to develop the condition.

Lead author Akira Wiberg, of NDORMS, said: “Many people have heard of carpal tunnel syndrome, and it is popularly portrayed as a disease associated with hand overuse.

“While there is evidence that certain occupational factors can increase an individual’s risk of developing CTS, most people, including many doctors, are probably unaware that genetic risk factors are thought to be the most important determinants of who goes on to develop the disease. This study adds considerable weight to the genetic side of the story.”

The researchers used the BioBank information to perform a genome-wide association study (GWAS), which can show the regions in the human genome where variants in the DNA sequence contribute to disease risk. Sixteen such regions were identified in this study, leading to the identification of numerous candidate genes that are likely to contribute to the development of CTS.

Several of these genes are known to be important in determining human height, and this study not only demonstrated that being shorter increases an individual’s risk of developing CTS, but provided the first ever explanation as to why people with CTS tend to be, on average, just under an inch shorter than those without CTS.

Using human tissues taken at the time of carpal tunnel surgery from a group of CTS patients in Oxford, the researchers showed that the genes discovered in the GWAS are highly expressed in the connective tissues around the median nerve in the carpal tunnel, suggesting that genetic variants alter these tissues to increase CTS risk.

The identification of these genes has not only advanced the understanding of the biology of CTS, but has opened up several new avenues of research, including how to use genetics to predict individuals who are at increased risk of developing CTS.

Supported by

MRC logo

National Institute for Health and Care Research logo

Similar stories

Emergency departments to use the FORCE pathway for wrist fractures in children

New research from the University of Oxford has shown that doctors can simplify treatment for the most common fracture in children, reducing NHS costs.

Kennedy researchers awarded funding to improve the understanding of inflammatory bowel diseases

A new £1.5M grant from the Medical Research Council (MRC) to the Powrie Group at the Kennedy Institute will help define different pathotypes of inflammatory bowel diseases that could lead to better and more focused treatments for patients.

Yoshi Itoh wins the International Dupuytren Award 2022

Yoshi Itoh, Associate Professor and Principal Investigator Cell Migration Group at the Kennedy Institute has been awarded the International Dupuytren Award 2022.

Taking a break from immune-suppressing medicines doubles the antibody response to COVID-19 booster vaccination

The Oxford Clinical Trials Research Unit (OCTRU) at NDORMS played a key role in the VROOM study which found that pausing immune-suppressing medicines such as methotrexate can increase the response to COVID-19 booster jabs.

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.